
ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 1

Before the lecture begins …

• Install Microsoft Visual C++ Compiler 6.0+ and
TeamSpeak (version 7.0+, current version 9.0b)
– see the Technical Guide on our site if you
need help or don’t have Visual C++.

• Download ITCC_HW0.zip, then Build and
execute the zipped projects FirstProgram.cpp
and HelloGraphics.cpp (see these slides for
instructions).

• Do all of the TODO sections in each project’s
main CPP file (these do not have to be
submitted)

• Review the Lecture 1 slides.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 2

Lecture 1

Compiler, Includes, Analysis of Basic
Programs, if Statements

Intro to C++

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 3

Notation

• Source code keywords are highlighted or
boxed in Ms Sans Serif font.

– void main(int argv)

• Conceptual Keywords are in italics.
– Implementation.

• Important items are in bold.
– something important here

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 4

Programming

• Why is it hard to learn?
– Little influence from outside. Anything takes work.

• How can you learn?
– Practice, Practice, Practice
– Make up challenges for yourself and implement them
– Check out a few C++ books to reinforce concepts
– Consult with friends who know programming
– Positive surroundings
– Know your goals, final goals are always exciting
– Look at what others have made

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 5

C vs. C++

• C++ can be thought of as a superset of C.
• C++ is different because programmers can use

Object-Oriented Programming (OOP) rather
than traditional programming methods to design
software. (Discussed in later lectures.)

• It has been shown that C++ drastically enhances
productivity and program maintainability over C
(Code Complete).

• If you learn C, then most of what you know can
be directly used in C++. This course will attempt
to use OOP as much as possible from the
beginning to ease the learning curve later on.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 6

SDKs

• The compiler comes with source code that
specifically allows you to program for Windows
which is NOT standard code to the C language.
Generally these are referred to as SDKs
(Software Development Kits) or APIs
(Application Programming Interfaces).

• Hence, the DirectX SDK or Windows SDK
contain code necessary to develop applications
that use DirectX or Windows.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 7

The Anatomy of the EXE

• An EXE (executable) file is written in
machine language, largely unintelligible to
humans but very compact. Every few
bytes of machine code tells the processor
to do a single, very specific action.

• Every line of C or C++ code may
correspond to several lines of assembly
code (on average, a 2:1 ratio according to
Code Complete)

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 8

C Code to Machine Language

• First, each source file (a file containing C/C++
code) is compiled, converting it into an object
file (a half-done state which defines all of the
objects present).

• Second, each object file is linked together to
form machine code. Why do they need to be
linked? Some source files may require unknown
code in other files which cannot be immediately
retrieved when a single file is compiled.

• The process of compiling then linking is called
building a project.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 9

Visual Studio: Building software

• Let’s go over how to use your compiler.
• These are meant to be very quick,

because we want to get to the fun stuff.
• If you have a question at any point ask.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 10

How to make an EXE
• Load a .dsw (workspace,

VC6) or .vcproj (project,
VC7) file by double-
clicking on it or by
selecting File->Open
Workspace …

• Press F5 to build the
project then run it in
Debug mode (usually the
best option), or press
Ctrl+F5 to build the
project and run it without
debugging.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 11

Compiler

• Build (F7)
– Compiles and Links all

of the files in a project.
• Compile (Ctrl+F7)

– Takes a file and
converts it to
executable form.

• Clean
– Remove intermediate

files used in
compilation.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 12

Errors

• Many types of errors exist:
– Compile-Time errors, which occur when you

Build/Compile a file and the compiler tells you about
it, often refusing to make an EXE.

– Linkage-Time errors, which typically occur because a
symbol used was not defined in the given files.

– Run-Time errors, which occur when a program has
successfully compiled, but generates an error when it
runs.

– Logical errors, a subset of Run-Time errors, these are
errors the programmer makes – they don’t have any
technical flaw so the compiler can never catch them,
but your program just doesn’t run as you expected.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 13

#include
• Preprocessor command/directive, a line that starts with #. These

commands are meant to be compiler commands – they do NOT
directly translate into machine code.

• #include “<filename in quotes>” – Tells the compiler to replace the
#include line with the contents of the filename.

• Example: In the following code fragment “Queue.h”, “ISocket.h”, and
“windef.h” will be inserted into the file in that order.

• Compilation in a file is top-down, starting at the top.

#include "Queue.h"
#include "ISocket.h"
#include <windef.h>

//Code in the cpp file

1
2
3
4
5
.
.
N

Compiler sees this first, then
replaces it with Queue.h

Then the compiler sees this, and
replaces it with lSocket.h

Same here
NOW the compiler goes on to

compile the source.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 14

Header Files
#include "ISocket.h"
#include <windef.h>

• What is the difference between these two statements? Notice that
neither of the .h files has a path associated with it.

• “” indicates that the .h file can be found in the same directory as
the file that contains the #include

• <> indicates that the .h file can be found in a standard, pre-
specified directory for .h files

• Why .h? .h stands for header file, and these files typically declare
symbols, not logic, that will be used in your .cpp file.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 15

Analyzing FirstProgram.cpp

What are all of the //s?
– All text following a // is a comment, meaning

that the text will be ignored by the compiler
– This allows programmers to write meaningful

thoughts into their code
– Good programmers write comments fairly

often by commenting on groups of commands
that have a purpose not immediately obvious
from merely looking at the source code

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 16

Analyzing FirstProgram.cpp
#include <iostream>
#include <conio.h>
using namespace std;

int main(void)
{

cout << "Hello, world!" << endl;
getch();

return 0;
}

• Initial observations:
– Every line (excluding preprocessor directives, braces, and function

definitions, explained later), has a semicolon that terminates it.
– When the EXE is run, the processor starts code execution inside the

braces of the main function.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 17

Analyzing FirstProgram.cpp
#include <iostream>
#include <conio.h>

• Files that are part of the C++ Standard Library should not include a
.h (although the physical file still has one). This is to distinguish
these files from deprecated C++ standards.

using namespace std;

• To avoid naming conflicts, the C++ Standard Library places its
commands inside the namespace std. By stating that we are using
this namespace, this saves us typing by not having to prefix
standard library commands with ‘std::’. In general, it is a bad idea to
use the using namespace command, but here its use may enhance
learning. (Will be covered in later lectures.)

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 18

Analyzing FirstProgram.cpp
int main(void)
• This is a function definition (to be analyzed later on in the course). For

now, know that this function represents the entry point for all C++ programs
– the place where code is first executed.

cout << "Hello, world!" << endl;
getch();

• ‘cout’ stands for ‘character out’. The ‘<<‘ writes the “Hello, world!” text to the
standard output stream. Since it points toward cout, this typically writes the
text to the terminal display. ‘endl’ (end line) sets the cursor to the beginning
of the next line.

• ‘getch’ stands for ‘get character’. This provides a pause before exiting the
program.

return 0;
• This sends a code of zero to the operating system. A zero indicates that our

program terminated normally.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 19

Console vs. Graphics
• Note that FirstProgram.cpp is a console application.

Most beginning programming courses emphasize how to
program console apps because graphics are usually
more complicated.

• However, we are going to abandon the console window
and delve into graphics programming.

• Graphics are complicated to set up, so we have provided
a common framework that you must link with your code.
You must also link some DirectX library files (.lib) with
your project.

• If you open one of our .dsw or .vcproj files, then all of the
setup necessary to correctly build applications is done
automatically, provided that you have installed the
DirectX SDK.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 20

Graphics
• Welcome aboard – now is when it starts to get exciting!
• The framework which we’ve provided you with emulates

programming the video card in DOS before SDKs such
as DirectX and OpenGL were available.

• Because of this, every pixel (the smallest dot that can be
lit on your monitor) that is displayed on the screen has to
be manually lit by our code.

• Throughout these lectures, we’ll not only increase our
C++ knowledge, but we’ll grow to understand how SDKs
like DirectX actually work by drawing graphics in
software.

• Don’t worry – even as a beginner to C++, you’ll start to
understand how graphics programming works, and at a
very fundamental level!

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 21

Analyzing HelloGraphics.cpp
• #include "../Framework/ITCC_Framework.h"
• #pragma comment (lib, "../Framework/ITCC_Framework.lib")

• // the (fake) entry point for our application
• int Main(ITCC *itcc)
• {
• itcc->InitWindowed(640, 480);

• while (itcc->Flip() != NULL)
• {
• itcc->Clear();
• itcc->Text ("Hello World!", 0, 0, RGB(255,0,0));
• }

• return 0; // terminated successfully
• }

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 22

Analyzing HelloGraphics.cpp
#include "./Common/ITCC_WinMain.h“
#pragma comment (lib, "../Framework/ITCC_Framework.lib")
• ITCC_WinMain.h defines symbols specific to our framework so that we can

call ITCC_* functions without errors. ITCC_Framework.lib provides pre-
compiled code written by us that make it easier to develop Windows
graphical applications. The .lib was provided instead of the source so that
you don’t need to download DirectX SDK to compile our source code.

int Main(ITCC *itcc)
• Not the entry point of the app, but it is for our purposes (graphics

initialization is done in the real main function, WinMain(…) for Windows
apps).

ITCC_Windowed(640, 480);
• Makes a window appear with its client area (the area under the title bar)

having a width of 640 pixels and a height of 480 pixels.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 23

Analyzing HelloGraphics.cpp
itcc->Clear();
itcc->Text ("Hello World!", 0, 0, RGB(255,0,0));
• Clears the client area to black, then prints the upper-left point of the

text “Hello World!” at (x,y)=(0,0) on the monitor. The three numbers
inside RGB correspond to the intensities of the red, blue, and green
light mixed together (note that 255 is the highest allowed intensity).

while (itcc->Flip() != NULL)
• The Flip() function is required to display any graphics that have been

written to the display. With the while command, we continually clear
the display and display text for the entire life of the program.

return 0;
• This sends a code of zero to the operating system. A zero indicates that

our program terminated normally.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 24

The if Statement

• Used to test whether a certain statement is
true. If it is true, then the code inside the curly
braces following the if is executed; if not, this
code is skipped.

Tip: Placing ‘!’ in front of ‘KEYDOWN’ will test whether the
key is NOT depressed.

if (KEYDOWN(VK_UP))
{

itcc->Text (“Up key down!", 0, 0, RGB(255,0,0));
}

Here, text at (0,0) is only drawn if
the up arrow key is depressed.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 25

if/else
• What if we wanted some code to be executed

if a condition is true (e.g. when a key is
pressed), else execute some other code (e.g.
when the key isn’t pressed)?

if (KEYDOWN(VK_UP))
{

itcc->Text (“Up: down!", 0, 0, RGB(255,0,0));

}
else if (!KEYDOWN(VK_UP))
{

itcc->Text (“Up: up!", 0, 0, RGB(0,255,0));
}

if (KEYDOWN(VK_UP))
{

itcc->Text ("Up: down!", 0, 0, RGB(255,0,0));
}
else
{

itcc->Text (“Up: up!", 0, 0, RGB(0,255,0));
}

Method 1 Method 2

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 26

SetPixel

Call the following inside the rendering loop:

itcc->SetPixel(0, 0, RGB32(255,255,255));
• This will light one white pixel on the screen in the

upper-leftmost corner.
• The first two parameters are where to place the pixel

in the client area – its x- and y-coordinate,
respectively. x is left-right, y is up-down.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 27

SetPixel: RGB

• We seem to use the term ‘RGB’ a lot in our
code, always requiring three numbers.

• This stands for ‘Red Green Blue’. Every visible
color can be created from a combination of
intensities of these three lights.

• When we input the three numbers, 0 is minimum
intensity and 255 is maximum intensity.

• Here are how to make common colors:
Red : (255, 0, 0) Yellow : (255, 255, 0)
Green: (0, 255, 0) Magenta: (255, 0, 255)
Blue : (0, 0, 255) Cyan : (0, 255, 255)
Black: (0, 0, 0) White : (255,255,255)

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 28

SetPixel: Color Depth

Note the macro inside the SetPixel subroutine:

RGB32(255,255,255));
• This will only create the right color for 32-bit color

modes, determined by what your desktop resolution is
set at.

• If this does not work, try the other two macros
RGB16a(…) or RGB16b(…) for 16-bit desktops.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 29

Full Screen
• Instead of itcc->InitWindowed, try typing:

itcc->InitFullScreen(640, 480, 32);
• This will initialize a full-screen application, physically changing

your monitor’s display resolution like computer games do.
• The first two parameters are the width and height of the

screen.
• The third parameter is the bit depth of the desired resolution.

Remember to use the right RGB* macro if you’re drawing
pixels on the screen!

• If you pass numbers that your video card cannot handle, then
your application will become unstable. We will talk about
resolving this in the next lecture.

ITCC, Lecture 1 (C) 2004 Daniel Wilhelm & Andrew Frants 30

TODO

• Download ITCC_1HW.zip from the site,
http://www.pclx.com/itcc/, and complete the
homework exercises, emailing them (FOR THIS
WEEK ONLY) to itcc_teachers@pclx.com.
Please do not resubmit solutions, even if they
are revised. All homework must be submitted by
6:00am PST Monday, July 5.

• Look over the slides for the second lecture
before Monday, July 5.

• If you finish with the homework, experiment!

